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A

In this paper we provide performance data for two new families of lightweight
block ciphers, SIMON and SPECK, each of which comes in a variety of widths
and key sizes. While many lightweight block ciphers exist, most were designed
to perform well on a single platform and were not meant to provide high per-
formance across a range of devices. The aim of SIMON and SPECK is to fill the
need for secure, flexible, and analyzable lightweight block ciphers. Each offers
excellent performance on hardware and software platforms, is flexible enough
to admit a variety of implementations on a given platform, and is amenable to
existing cryptanalytic techniques. While both perform exceptionally well across
the full spectrum of lightweight applications, SIMON is tuned for optimal per-
formance in hardware, and SPECK for optimal performance in software.
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1. I

Existing cryptographic algorithms were for the most part designed to meet
the needs of the desktop computing era. Such cryptography tends not to be
particularly well-suited to the emerging era of pervasive computing, in which
many highly constrained hardware- and software-based devices will need to
communicate wirelessly with one another. And security is important for many
of these devices: a hacker should not be able to take control of your insulin
pump or override the brakes in your car.

The field of lightweight cryptography addresses security issues for highly con-
strained devices, and many algorithms, block ciphers in particular, have been
proposed for lightweight cryptographic applications—see the references at the
end of this paper for a sample. The obvious first question is “Why not just use
AES for lightweight applications?” Indeed AES [DR02] has been suggested for
lightweight use, and given its stature, we believe it should be used whenever
appropriate. However, for the most constrained environments, AES is not the
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right choice: in hardware, for example, the emerging consensus in the academic
literature is that area should not exceed 2000 gate equivalents (see [JW05]), while
the smallest implementation of AES requires 2400∗ [MPL+11].

Among the block ciphers intended for use on constrained devices, some have
been designed specifically to perform well on dedicated Application-Specific
Integrated Circuits (ASICs), and thus can be realized by small circuits with
minimal power requirements. Others are meant to perform well on low-cost
microcontrollers with limited flash, SRAM, and/or power availability. Unfor-
tunately, design choices meant to optimize performance on one platform often
adversely affect performance on another.†

We have designed two families of highly-optimized block ciphers, SIMON
and SPECK, that are flexible enough to provide excellent performance in both
hardware and software environments. To the best of our knowledge, each of
SIMON and SPECK outperforms both the best existing hardware algorithms (in
terms of the area required to achieve a given throughput), and the best existing
software algorithms (in terms of code size and memory usage). In addition,
both families consist of algorithms having a range of block and key sizes, and
admitting a variety of implementations, thereby allowing for a close match with
application requirements and security needs.

SIMON has been optimized for performance on hardware devices, and SPECK
for performance in software. But we emphasize that both families perform
exceptionally well in both hardware and software, offering the flexibility across
platforms that will be required by future applications.

Table 1.1 shows hardware and software performance figures for SIMON, SPECK,
and some other popular block ciphers. This table (together with the expanded
versions of it that appear later in the paper) is the primary content of the pa-
per, and that is why we present it here at the outset. For readers with some
background in the field, much of the table will make sense without further
explanation, but more details can be found in Section 4.

∗The algorithms we discuss in this paper can be implemented in hardware and software
with roughly half the footprint of AES, and this greatly expands their range of application.

†for example, the reliance on software-unfriendly bit permutations or bit-serial computa-
tions, and not-especially-hardware-friendly S-boxes.
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hardware software

size name area throughput flash SRAM throughput
(GE) (kbps) (bytes) (bytes) (kbps)

48/96 SIMON 782 15.0 176 0 560.6
SPECK 882 12.5 134 0 933.2
EPCBC 1008 12.1 [365] 0 [95.5]

64/80 PRESENT 1030 12.4 [487] 0 95.5
Piccolo 1043 14.8 n/a n/a n/a
KATAN 1054 25.1 272 18 14.2
TWINE 1116 11.8 [396] 191 54.5
KLEIN 1478 23.6 766 18 167.9

64/96 SIMON 854 19.0 242 0 535.3
SPECK 984 15.7 180 0 900.6
KLEIN 1528 19.1 [766] [18] [134.3]

64/128 SIMON 1011 18.1 246 0 521.9
SPECK 1128 14.2 188 0 831.8
Piccolo 1334 12.1 n/a n/a n/a
PRESENT 1339 12.1 [487] [0] [95.5]

96/96 SIMON 985 12.5 398 0 470.0
SPECK 1126 13.8 284 0 814.9
EPCBC 1333 12.1 [730] 0 [95.5]

128/128 SIMON 1274 12.9 638 0 366.9
SPECK 1501 21.6 438 0 644.6
AES 2400 56.6 943 33 445.2

Table 1.1: Performance comparisons. Size is block size/key size;
hardware refers to an ASIC implementation, and software to an
implementation on an 8-bit microcontroller; clock speeds are 100
kHz (hardware) and 16 MHz (software). The best performance for
a given size is indicated in red, the second best in blue. Numbers
in brackets are our estimates.

No decision has yet been made regarding the public release of SIMON and
SPECK. For this reason, this paper shows performance data but doesn’t de-

3



scribe the algorithms themselves. Whether or not SIMON and SPECK are
eventually published, we hope that this paper serves both to spur the field of
lightweight cryptography and to encourage developers to incorporate cryptog-
raphy in those lightweight applications where it is needed.

2. L    

The term lightweight is used broadly to mean that an algorithm is suitable for
use on some constrained platform. But the features that make an algorithm excel
on an 8-bit microcontroller, say, do not necessarily imply that it can be realized
by an extremely small circuit. Thus the definition of the term lightweight is
really platform-dependent, and so some general discussion is in order regarding
our goals.

First, we make no attempt to optimize for a specific application. We prefer to
make application-independent design choices that ensure good performance
on both ASICs and 8-bit microcontrollers, with the idea that good performance
in these environments will carry over to other important platforms as well—
FPGAs, 4- and 16-bit microcontrollers, 32-bit processors, and so on.

The principal aim is to provide algorithms that (1) have very small hardware
implementations, and at the same time (2) have low-power software implemen-
tations on small microcontrollers, with minimal flash and SRAM usage.

It is important to note that for many (but not all) lightweight applications,
throughput is not the top priority. For instance, a throughput of around 12
kilobits per second (kbps) at 100 kHz is adequate for many hardware-based
RFID applications (and for this reason the hardware performance values in
Table 1.1 are for the smallest implementation exceeding this threshold); other
applications, e.g., access control, can tolerate even lower throughput. Our desire
for low-area hardware designs means that we favor simple, low-complexity
round functions, even if that means many rounds are required.

For a lightweight algorithm to be as useful as possible, it should be flexible
enough not just to be implemented efficiently on a variety of platforms, but also
to allow for a variety of implementations on a single platform. For hardware
applications, this means that it should be possible to take advantage of the
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available real estate. For extremely constrained hardware environments, very
low-area implementations should be achievable, but if constraints are not so
tight, one should be able to take advantage of this fact with larger-area, higher-
throughput implementations. For software applications, very small flash and
SRAM usage should be attainable, but high-throughput, low-power implemen-
tations should be achievable as well.

Existing lightweight algorithms are not always as flexible as they could be. One
important consideration is the extent to which an algorithm can be serialized
in hardware. An implementation that updates a single bit at a time is said to
be fully serialized, or bit-serial, while one that updates the entire block during
each cycle is said to be unserialized, or iterated. Some algorithms are inherently
bit-serial, making for very small implementations in hardware but preventing
the possibility of higher-throughput, iterated implementations. On the other
hand, many algorithms are S-box based, precluding the possibility of efficient
serialization at a level below the width of the S-box. This is reflected in the
AES row of Table 1.1, where we see a throughput value much higher than
the requisite 12 kbps, since AES is built from 8-bit S-boxes.∗ Algorithms that
can be efficiently serialized at any level dividing the word size provide better
optimization opportunities.

Flexibility extends in another direction as well: since applications and devices
vary, a variety of block and key sizes is useful. For instance, block sizes of 64
and 128 bits are prevalent in the world of desktop computing, but atypical block
sizes of 48 or 96 bits are optimal for electronic product code (EPC) applications.
Key sizes, on the other hand, are related to the desired level of security: a
very low-cost device may achieve adequate security using just 64 bits of key,
while more sensitive applications (running on suitably higher-cost devices) may
require as many as 256 bits of key.

This is our first mention of security, which is of course the primary goal of
cryptography. In addition to meeting performance objectives, it is important
that a cryptographic algorithm have the advertised level of security. Since con-
fidence in the security of an algorithm increases as it is analyzed, a designer
should strive to create algorithms that are amenable to current cryptanalytic

∗And SIMON 128/128 can achieve a throughput of 51.4 kbps, comparable with this imple-
mentation of AES, at an area of 1503 GE—just 63% the area of AES. See Table 5.2.
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techniques. Designs that are difficult to analyze may well be secure but hardly
inspire confidence. SIMON and SPECK have simple round functions that lend
themselves well to analysis. Assuming the eventual public release of these algo-
rithms, we trust that the simplicity of the designs will entice the cryptographic
community to expend some effort analyzing them.

While our intent is that SIMON and SPECK provide the advertised level of
security, a large security margin is a luxury that we can’t always afford when
resources are scarce. Hence we have built in what we believe is a sufficient
security margin, but not an excessive one, and one which perhaps is a bit
tighter than would be supplied in a more traditional setting.

This brings up an important issue, and one we would like to see discussed
further: What sorts of cryptanalytic adversaries should be considered in the
world of lightweight cryptography? Does it make sense to allow access to the
complete set of matched inputs and outputs for an algorithm with a 128-bit block
size? After all, the amount of data that we expect a single lightweight device
to encrypt during its functional lifetime is tiny, and data to which an adversary
has access will likely remain small when this tiny quantity is summed over all
devices using a common key. In addition, for devices that can’t be secured
physically, practical (side-channel, reverse engineering) attacks will likely take
precedence over cryptanalytic ones. The point is that there is a price to be
paid (with every encryption) for blocking purely theoretical weaknesses, and it
makes sense to think about what price is justified.

3. SIMON  SPECK 

SIMON and SPECK are block cipher families. Each supports block sizes of 32,
48, 64, 96, and 128 bits, with up to three key sizes to go along with each block
size. Each family provides ten algorithms in all. Table 3.1 lists the different
block and key sizes, in bits, for SIMON and SPECK.

The 32-bit block size versions are intended for the most highly constrained
applications, where only a minimal level of security is needed. The 48- and 96-
bit variants are primarily intended for EPC applications. The 64-bit versions are
meant for a variety of lightweight applications, and the 128-bit instantiations
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block size key sizes

32 64

48 72, 96

64 96, 128

96 96, 144

128 128, 192, 256

Table 3.1: SIMON and SPECK parameters

are for applications where the highest security is required but where AES is
unsuitable due to hardware or software constraints.

SIMON with a block size of k bits and a key size of r bits is denoted SIMON k/r.
For example, SIMON 64/128 refers to the SIMON variant that uses a block size
of 64 bits and a key size of 128 bits. Similar notation is used to denote the
various SPECK block ciphers.

4. P 

In this section we further discuss the performance of SIMON and SPECK, and
fill in the details regarding the comparisons made in Table 1.1 with AES [DR02],
EPCBC [YKPH11], KATAN [CDK09], KLEIN [GNL11], Piccolo [SIH+11], PRES-
ENT [BKL+07], and TWINE [SMMK]. Note that while our algorithms are being
considered for release, they are still under analysis, and so the numbers we
present are subject to change: it is possible for them to improve slightly as
better implementations are found, or perhaps get a bit worse if it is determined
that some additional stepping is required for security.

It is important to note the difficulties inherent in the sort of comparison we’re do-
ing. Different authors implement their algorithms under differing assumptions:
various cell libraries are used for hardware implementations, and a variety of
assumptions are made for software implementations. In addition, it’s not al-
ways clear what a particular author means, for example, by code size (is the
decryption algorithm implemented or not?) or gate count (is the key schedule
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included?). All of this can make attempts at a fair comparison problematic. That
said, we believe the relatively large performance gap between our algorithms
and others cannot fully be explained by these discrepancies.

In this paper we strive to make equitable comparisons, and to provide all
the relevant details about our performance metrics and our implementation
platforms. We begin by discussing the platforms a bit further.

The key hardware resources are circuit area and power. Area is measured in gate
equivalents; a gate equivalent (GE), which depends on a particular cell library,
is the physical area required for the smallest available two-input NAND gate.

Our results were generated using an ARM standard cell library for the IBM 8RF
(0.13 micron) ASIC process. The areas of some basic gates in this library are as
follows: NOT 0.75, NAND 1.00, AND 1.25, OR 1.25, XOR 2.00, XNOR 2.00, 2-1 MUX 2.25, D
flip-flop 4.25, 1-bit full adder 5.75, scan flip-flop 6.25. (The existence of a smaller
D flip-flop in this library than that found in libraries used by some authors—
4.25 vs. 4.67—improves our numbers somewhat, but this does not fully explain
our area advantages. We note also that our scan flip-flop is larger—6.25 vs. 6.0.)

Areas given for our algorithms are for complete implementations: this includes
flip-flops to store the state and key, logic to implement the encryption algorithm
and key schedule, control logic to manage the encryption, and logic to allow
the plaintext to be loaded and ciphertext to be read out.∗

In this paper, we report only area figures, and forgo detailed information about
power. The reasons for this are (1) power consumption is strongly tied to the
feature size, clock speed, etc., and this makes comparisons especially difficult,
and (2) once these parameters are fixed, power scales roughly linearly with
area, and so from area figures alone we can estimate power consumption if we
know the scaling factor.†

Before we discuss Table 1.1 in detail, we point out the one slight mismatch in key
sizes in the data presented there: neither SIMON nor SPECK is equipped with

∗We have not included an implementation of the decryption algorithm in our area figures.
This is consistent with other authors’ work: for extremely lightweight applications one would
want to use a block cipher in an encrypt-only mode.

†See Section 5, where we give a formula that correctly computes power as a function of area
to within 25% for our simulations at 0.13 microns and 100 kHz.
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a variant that uses an 80-bit key. In an attempt to draw the fairest comparison,
we have lumped algorithms of size 64/96 together in the table with those of
size 64/80.

Columns 3 and 4 of Table 1.1 compare SIMON and SPECK with some of the
best performing block ciphers available for lightweight hardware applications.
The hardware data for PRESENT and EPCBC is found in [YKPH11], for Piccolo
in [SIH+11], for KATAN in [CDK09], for TWINE in [SMMK], for KLEIN in
[GNL11], and for AES in [MPL+11].

Turning to software applications now, lightweight algorithms are typically
implemented on inexpensive microcontrollers with very limited memory re-
sources. ATMEL’s ATtiny45 8-bit microcontroller, for instance, has just 4 kB of
flash and 256 bytes of SRAM. Any cryptography on such a device competes
with the application for scarce resources.

In addition, such microcontrollers usually run on battery power. Cryptographic
components must limit power usage in the interest of extending battery life.

All of our software implementations were coded in assembly on an ATMEL
ATmega128 8-bit microcontroller running at 16 MHz. Distinct implementations
were done to minimize power consumption, flash usage, and SRAM usage.
Results are presented in Section 6.

Table 1.1 compares balanced ∗ implementations of SIMON, SPECK, and various
well-known algorithms. For the latter, we used the best such implementation
that we could find in the literature. The software data for PRESENT is derived
from [EKP+07]; for KLEIN, KATAN, and AES from [EGG+12]; and for TWINE
from [SMMK]. We note that the implementations given in these papers include
the code for the encryption and decryption algorithms. Since our SIMON
and SPECK code provides encrypt capability only (which is reasonable for
lightweight applications), we have subtracted the size of the decryption code†

from the numbers reported by those authors to obtain the numbers in our table.

∗Balanced here means maximizing the ratio
throughput

flash + 16 · SRAM
, amongst the implementa-

tions we considered.
†This was determined by examining assembly code whenever available: see [EGG+]. When

the code was not available, we cut the specified flash usage in half as a reasonable estimate.
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Alternatively, we could have included the decryption algorithms in our imple-
mentations. Naive implementations would have required another 100 bytes
of flash or so, but by exploiting the similarity between the encryption and
decryption algorithms we could reduce this number significantly.

We note that the best balanced implementations of our algorithms were in fact
the SRAM-minimizing implementations. For these, code implementing the
encryption algorithm is stored in flash, and the key is pre-expanded and also
stored in flash; this obviates the need to include code for the key schedule and
allows for high-throughput/low-power encryption. This is in contrast to the
way in which the other algorithms handle the key: generally they include code
for the key schedule, and generate round keys on the fly.

We conclude by highlighting a couple of comparisons from Table 1.1 between
our algorithms and some other prominent algorithms.

• PRESENT-80 is a leading hardware-oriented lightweight block cipher,
with an implementation requiring just 1030 GE and achieving throughput
of 12.4 kilobits per second at 100 kHz. SIMON 64/96 and SPECK 64/96
(which provide 16 added bits of security) achieve even higher throughput
at areas of just 854 and 984 GE, respectively. More importantly, our algo-
rithms also have excellent software performance, and this is something
that PRESENT was not designed to offer: SIMON 64/96 and SPECK 64/96
provide about five and nine times the throughput of PRESENT-80, respec-
tively, for less than half the code size.

• AES is one of the best block ciphers for 8-bit microcontrollers. A good
implementation of AES-128 on an ATmega 8-bit microcontroller requires
943 bytes of flash, 33 bytes of SRAM, and achieves a throughput of 445
kbps. SPECK 128/128 can achieve nearly 50% greater throughput while
using less than 50% of the memory: SIMON 128/128 can come close to
the throughput of AES, but at two-thirds the memory. More importantly,
SPECK 128/128 and SIMON 128/128 can be realized in hardware for 63%
and 53%, respectively, of the area required for AES-128.

Perhaps most significantly, lightweight applications typically do not re-
quire a 128-bit block cipher: a 64-bit block cipher is perfectly adequate.
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When SIMON 64/128 and SPECK 64/128 are compared with AES (which
offers no 64-bit size), the difference is more compelling. The memory for
our algorithms is about a quarter of that required by AES, and the through-
put is 17% greater (SIMON) and 87% greater (SPECK). The hardware area
drops significantly as well, to under half that required by AES.

5. H 

This section presents detailed information on our ASIC implementations of
SIMON and SPECK. To demonstrate the full flexibility of our algorithms in
hardware, we have determined the area required for circuits at all levels of
serialization for which efficient implementations are possible, together with the
corresponding throughput values.

size name area throughput
(GE) (kbps)

32/64 SIMON 523 5.5
SPECK 582 4.6

48/96 SIMON 738 5.0
SPECK 794 4.2

64/96 SIMON 801 4.8
SPECK 860 3.9

64/128 SIMON 939 4.5
SPECK 997 3.6

96/96 SIMON 946 4.2
SPECK 1012 3.4

128/128 SIMON 1218 3.2
SPECK 1292 2.7

Table 5.1: Hardware performance: area-minimizing implemen-
tations

As we have pointed out, SIMON and SPECK admit bit-serialized hardware im-
plementations. Table 5.1 shows that these have throughputs below the 12 kbps
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threshold required for inclusion in Table 1.1. However, they have smaller circuit
areas, which represent lower limits for the areas of hardware instantiations of
our algorithms.

Table 5.2 presents all of our hardware data for SIMON and SPECK. For our
implementations, at 0.13 microns and at a clock speed of 100 kHz, leakage
power and switching power are negligible, each accounting for less than 2%
of total power. Essentially all the power here is cell internal power, which is
basically just the power required to keep the chip on. Empirically, the power in
nanowatts (nW) for these implementations turns out to be approximately equal
to 0.56 times the area in gate equivalents; this formula is accurate in all cases to
within 25% (and in most cases to within 5%). For example, for SIMON 64/128
serialized at 4 bits per cycle, the cell internal power is 537 nW, the switching
power is 10 nW, and the leakage power is 8 nW, for a total of 555 nW. The area
is 1011 GE, and 0.56 · 1011 ≈ 566, a prediction about 2% higher than the actual
power consumption.

Table 5.2: Hardware performance for SIMON and SPECK

area throughput area throughput
algorithm (GE) (kbps) algorithm (GE) (kbps)

SIMON 32/64 523 5.5 SPECK 32/64 582 4.6
535 11.1 640 9.0
587 22.1 714 18.0
666 43.8 824 35.9
722 86.5 849 128.0

SIMON 48/72 630 5.5 SPECK 48/72 693 4.6
663 11.1 752 9.3
665 16.6 772 13.9
701 22.1 818 18.6
716 33.1 855 27.8
764 44.0 950 37.0
830 65.8 1036 55.2
912 129.7 1151 200.0

Continued on next page
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algorithm area throughput algorithm area throughput

SIMON 48/96 738 5.0 SPECK 48/96 794 4.2
777 10.0 856 8.3
782 15.0 882 12.5
824 19.9 931 16.6
850 29.8 971 24.9
908 39.7 1068 33.1
993 59.3 1164 49.5

1061 117.1 1254 177.8

SIMON 64/96 801 4.8 SPECK 64/96 860 3.9
817 9.5 918 7.8
854 19.0 984 15.7
936 37.9 1090 31.2

1084 75.3 1328 62.2
1204 148.8 1521 228.6

SIMON 64/128 939 4.5 SPECK 64/128 997 3.6
966 9.1 1057 7.1

1011 18.1 1128 14.2
1109 36.2 1245 24.5
1288 71.9 1499 56.6
1401 142.2 1658 206.5

SIMON 96/96 946 4.2 SPECK 96/96 1012 3.4
983 8.3 1063 6.9
985 12.5 1085 10.3

1025 16.6 1126 13.8
1037 24.9 1156 20.6
1113 33.2 1254 27.5
1143 49.7 1331 41.2
1236 66.2 1512 54.9
1356 99.0 1666 82.1
1579 195.9 2057 309.7

Continued on next page
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algorithm area throughput algorithm area throughput

SIMON 96/144 1147 3.9 SPECK 96/144 1219 3.2
1184 7.8 1270 6.3
1187 11.8 1294 9.5
1226 15.7 1335 12.7
1239 23.5 1370 19.0
1315 31.3 1469 25.4
1345 46.8 1557 37.9
1438 62.3 1741 50.6
1557 93.2 1921 75.6
1781 184.6 2262 282.3

SIMON 128/128 1218 3.2 SPECK 128/128 1292 2.7
1235 6.4 1341 5.4
1274 12.9 1405 10.8
1352 25.8 1501 21.6
1503 51.4 1727 43.1
1751 102.4 2172 85.9
2094 203.2 2739 328.2

SIMON 128/192 1493 3.0 SPECK 128/192 1566 2.6
1513 6.1 1618 5.0
1550 12.1 1683 10.1
1629 24.2 1790 20.2
1780 48.3 2033 40.4
2032 96.2 2524 80.5
2373 191.0 3012 304.8

SIMON 128/256 1776 2.9 SPECK 128/256 1838 2.4
1800 5.9 1892 4.8
1846 11.8 1961 9.5
1943 23.5 2079 19.0
2122 46.9 2338 38.0
2408 93.4 2862 75.8
2770 185.5 3282 284.5
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6. S : 8- 

Typical microcontrollers have 4-, 8-, 16-, or 32-bit word sizes, and low-cost mi-
crocontrollers tend to have severe restrictions on available memory (flash and
SRAM); power availability tends also to be constrained. While the software
values presented in Table 1.1 represent balanced implementations, in this sec-
tion we display our full data for minimizing SRAM usage, flash usage, and
maximizing throughput.∗

For the SRAM-minimizing implementations, code for the encryption algorithm
is stored in flash. We do not implement the key schedule, instead storing pre-
expanded round keys in flash. The encryption cost includes the time to load
the key from flash into registers as needed.

For implementations maximizing throughput and for those minimizing flash,
we again store the encryption code in flash. Here, however, we implement
the key schedule and store the corresponding code in flash as well.† We then
expand the key and store it in SRAM. The encryption cost counts only the
cycles required for encryption, i.e., it does not include the cycles required for
the generation or storage of expanded key in SRAM. This approach makes sense
for many high-speed applications, where a large amount of data may need to
be encrypted. We note that the key generation for SIMON or SPECK requires
about as many cycles as a single encryption.

Tables 6.1, 6.2, and 6.3 show implementations that minimize SRAM usage,
minimize flash usage, and maximize throughput, respectively. In each table,
throughput is not shown directly, as it was in Table 1.1. Instead, we show the
encryption cost, which is the number of cycles required for each encrypted byte,
as this is the common metric used in the literature for software implementations.

∗Throughput on a microcontroller is inversely proportional to energy, i.e., power integrated
over time. So we effectively maximize battery life by minimizing the number of cycles required
for an encryption, and therefore maximizing throughput.

†This convention does not always produce minimal flash implementations—for smaller
versions of the algorithms, with fewer round keys, it can require less memory to store all the
pre-expanded round keys in flash than it does to implement the key schedule. For consistency,
however, we use the same approach for all implementations in a given table.
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size name flash SRAM enc. cost
(bytes) (bytes) (cycles/byte)

32/64 SIMON 114 0 217
SPECK 92 0 137

48/72 SIMON 167 0 209
SPECK 128 0 125

48/96 SIMON 176 0 228
SPECK 134 0 137

64/96 SIMON 242 0 239
SPECK 180 0 142

64/128 SIMON 246 0 245
SPECK 188 0 154

96/96 SIMON 398 0 272
SPECK 284 0 157

96/144 SIMON 410 0 284
SPECK 296 0 168

128/128 SIMON 638 0 349
SPECK 438 0 199

128/192 SIMON 662 0 366
SPECK 454 0 210

128/256 SIMON 670 0 372
SPECK 470 0 221

Table 6.1: Software implementations minimizing SRAM usage

Regarding the data in Table 6.3, we emphasize that the implementations were
optimized for throughput without any regard for the other resources. For a
very slight decrease in throughput, there are implementations of SIMON and
SPECK that use significantly less flash. For instance, there is an implementation
of SIMON 64/96 that requires around 404 bytes of flash, 156 bytes of SRAM, and
has an encryption cost of 208 cycles/byte. That is, increasing the encryption
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size name flash SRAM enc. cost
(bytes) (bytes) (cycles/byte)

32/64 SIMON 182 64 208
SPECK 114 40 162

48/72 SIMON 180 99 198
SPECK 130 60 168

48/96 SIMON 200 108 216
SPECK 136 66 185

64/96 SIMON 198 156 225
SPECK 156 96 178

64/128 SIMON 218 160 230
SPECK 164 104 193

96/96 SIMON 214 276 253
SPECK 196 168 180

96/144 SIMON 234 288 264
SPECK 208 180 193

128/128 SIMON 250 480 323
SPECK 244 288 217

128/192 SIMON 270 504 339
SPECK 260 304 229

128/256 SIMON 290 512 344
SPECK 310 320 241

Table 6.2: Software implementations minimizing flash usage

cost by 1% lowers the flash usage by 87%. SPECK 64/96 has an implementation
using just 366 bytes of flash (a decrease of 87%), 96 bytes of SRAM, and having
an encryption cost of 108 cycles/byte (an increase of 2%). Many other trade-offs
are possible.

Finally, none of the flash values we report include any wrappers necessary for an
actual application to interface with the external world. In particular, we have
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omitted the instructions and cycle counts associated with reading in data from
the ports.

size name flash SRAM enc. cost
(bytes) (bytes) (cycles/byte)

32/64 SIMON 1418 64 177
SPECK 884 40 112

48/72 SIMON 2032 99 176
SPECK 1078 60 93

48/96 SIMON 2226 108 192
SPECK 1172 66 101

64/96 SIMON 3082 156 205
SPECK 1612 96 106

64/128 SIMON 3178 160 210
SPECK 1764 104 116

96/96 SIMON 5250 276 238
SPECK 2732 168 122

96/144 SIMON 5494 288 248
SPECK 2868 180 128

128/128 SIMON 8978 480 308
SPECK 4516 288 154

128/192 SIMON 9442 504 323
SPECK 4804 304 163

128/256 SIMON 9610 512 328
SPECK 4980 320 168

Table 6.3: Software implementations minimizing encryption cost
(power consumption)
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A. SIMON  SPECK  64- P

As it turns out, and although this was not our primary aim, SIMON and SPECK
have exceptional performance on 64-bit processors. Table A.1 reports the en-
cryption cost for two different C implementations on a single core of a 2.93 GHz
Intel Core i7-870 processor: a straightforward reference implementation with
nothing done in parallel, and a high-speed SSE implementation. Both use a
pre-expanded key, and so incur no cost for the key expansion.

The SSE versions of SPECK 64 and SPECK 128 carried out sixteen and eight par-
allel encryptions, respectively. The SSE versions of SIMON 64 and SIMON 128
were bit-sliced, each performing 128 parallel encryptions. The cost to transpose
data for SIMON was not counted.

In each case our code was compiled using GCC version 4.6.1 with the -O3 flag
set (except for the SSE versions of SIMON 128, which performed significantly
better when compiled with GCC version 4.1.2 and the -O1 flag).

size name enc. cost SSE enc. cost
(cycles/byte) (cycles/byte)

64/96 SIMON 27.0 4.1
SPECK 15.6 2.0

64/128 SIMON 27.0 4.2
SPECK 16.2 2.2

128/128 SIMON 20.2 5.9
SPECK 11.6 2.8

128/192 SIMON 20.7 6.2
SPECK 12.3 2.9

128/256 SIMON 21.3 7.1
SPECK 12.9 3.1

Table A.1: Encryption costs on a 64-bit processor
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