Digital Identity, Trust and Privacy on the open Internet

Archive for the ‘MIT Connection Science’ Category

Core Identity Issuers (Part II)

without comments

Continuing from the previous post (Part I of the Core Identity series), the goal of a Core Identity Issuer (CoreID Issuer) is to collate sufficient data – aggregate data and non-PII data — from members of a given Circle of Trust in order to create a Core Identity and Core Identifier for a given user (see Figure).

The Issuer performs this task as a trusted member of the Circle of Trust, governed by rules of operations (i.e. legal contract) and with the consent of the user. Architectures and techniques such as MIT OPAL/Enigma can be used here in order for the CoreID Issuer to obtain privacy-preserving aggregate data from the various sources who are members of the Circle of Trust.



The goals of the Core-ID Issuer within a Circle of Trust are as follows:

  • Onboard a member-user: The Issuer’s primary function is to on-board users who are known to the CoT community, and who have requested and consented to the creation of a Core Identity.
  • Collate PII-free data into a Core Identity: The Issuer obtains aggregate data and other PII-free data regarding the user from members of the CoT. This becomes the core identity for the user, which is retained by the Issuer for the duration selected by the user. The Issuer must keep the core identity as secret, accessible only to the user.
  • Generate Core Identifier (unlinkable): For a given user and their core identity, the Issuer generates a core identifier (e.g. random number) that must be unlikable to the core identity. Note that a core identifier must not be used in a transaction. The core identifier value may be contained as a signed certificate or other signed data structure, with the Persona Provider as its intended audience (see Figure).
  • Issue Core Assertions regarding the Core Identifier: The purpose of the Issuer generating a core identifier is to allow PII-free core-assertions regarding the user to be created. These signed core assertions must retain the privacy of the user, and must declare assertions about the core identifier.
  • Interface with Persona Providers: The Issuer’s main audience is the Persona Provider, who must operate with the Issuer under legal trust framework that calls-out user privacy as a strict requirement. The Issuer must make available the necessary issuance end-points (i.e. APIs) as well as validation end-points to the Persona Provider. In some cases, from an operational deployment view the Issuer and Persona Provider may be co-located or even tightly coupled under the same provider entity, although the functional difference and boundaries are clear.

Written by thomas

September 20th, 2016 at 6:58 pm

Query Smart Contracts: Bringing the Algorithm to the Data

without comments

One paradigm shift being championed by the MIT OPAL/Enigma community is that of using (sharing) algorithms that have been analyzed by experts and have been vetted to be “safe” from the perspective of privacy-preservation. The term “Open Algorithm” (OPAL) here implies that the vetted queries (“algorithms”) are made open by publishing them, allowing other experts to review them and allowing other researchers to make use of them in their own context of study.

One possible realization of the Open Algorithms paradigm is the use of smart contracts to capture these safe algorithms in the form of executable queries residing in a legally binding digital contract.

What I’m proposing is the following: instead of a centralized data processing architecture, the P2P nodes (e.g. in a blockchain) offers the opportunity for data (user data and organizational data) to be stored by these nodes and be processed in a privacy-preserving manner, accessible via well-known APIs and authorization tokens and the use of smart contracts to let the “query meet the data”.

In this new paradigm of privacy-preserving data sharing, we “move the algorithm to the data” where queries and subqueries are computed by the data repositories (nodes on the P2P network). This means that repositories never release raw data and that they perform the algorithm/query computation locally which produce aggregate answers only. This approach of moving the algorithm to the data provides data-owners and other joint rights-holders the opportunity to exercise control over data release, and thus offers a way forward to provide the highest degree of privacy-preservation while allowing data to still be effectively shared.

This paradigm requires that queries be decomposed into one or more subqueries, where each subquery is sent to the appropriate data repository (nodes on the P2P network) and be executed at that repository. This allows each data repository to evaluate received subqueries in terms of “safety” from a privacy and data leakage perspective.

Furthermore, safe queries and subqueries can be expressed in the form of a Query Smart Contract  (QSC) that legally bind the querier (person or organization), the data repository and other related entities.

A query smart contract that has been vetted to be safe can be stored on nodes of the P2P network (e.g. blockchain). This allows Queriers to not only search for useful data (as advertised by the metadata in the repositories) but also search for prefabricated safe QSCs that are available throughout the P2P network that match the intended application. Such a query smart contract will require that identities and authorizations requirements be encoded within the contract.

A node on the P2P network may act as a Delegate Node in the completion of a subquery smart contract.  A delegate node works on a subquery by locating the relevant data repositories, sending the appropriate subquery to each data repository, and receiving individual answers and collating the results received from these data repositories for reporting to the (paying) Querier.

A Delegate Node that seeks to fulfill a query smart contract should only do so when all the conditions of the contract has been fulfilled (e.g. QSC has valid signature; identity of Querier is established; authorization to access APIs at data repositories has been obtained; payment terms has been agreed, etc.). A hierarchy of delegate nodes may be involved in the completion of a given query originating from the Querier entity. The remuneration scheme for all Delegate Nodes and the data repositories involved in a query is outside the scope of the current use-case.

Written by thomas

August 6th, 2016 at 1:21 pm

What and why: MIT Enigma

without comments

I often get asked to provide a brief explanation about MIT Enigma — notably what it is, and why it is important particularly in the current age of P2P networking and blockchain technology.  So here’s a brief summary.

The MIT Enigma system is part of a broader initiative at MIT Connections Science called the Open Algorithms for Equity, Accountability, Security, and Transparency (OPAL-EAST).

The MIT Enigma system employs two core cryptographic constructs simultaneously atop a Peer-to-Peer (P2P network of nodes). These are secrets-sharing (ala Shamir’s Linear Secret Sharing Scheme (LSSS)) and multiparty computation (MPC). Although secret sharing and MPC are topics of research for the past two decades, the innovation that MIT Enigma brings is the notion of employing these constructions on a P2P network of nodes (such as the blockchain) while providing “Proof-of-MPC” (like proof of work) that a node has correctly performed some computation.

In secret-sharing schemes, a given data item is “split” into a number of ciphertext pieces (called “shares”) that are then stored separately. When the data item needs to be reconstituted or reconstructed, a minimum or “threshold” number of shares need to be obtained and merged together again in a reverse cryptographic computation. For example, in Naval parlance this is akin to needing 2 out of 3 keys in order to perform some crucial task (e.g. activate the missile). Some secret sharing schemes possess the feature that some primitive arithmetic operations can be performed on shares (shares “added” to shares) yielding a result without the need to fully reconstitute the data items first. In effect, this feature allows operations to be performed on encrypted data (similar to homomorphic encryption schemes).

The MIT Enigma system proposes to use a P2P network of nodes to randomly store the relevant shares belonging to data items.  In effect, the data owner no longer needs to keep a centralized database of data-items (e.g. health data) and instead would transform each data item into shares and disperse these on the P2P network of node.  Only the data owner would know the locations of the shares, and can fetch these from the nodes as needed.  Since each of these shares appear as garbled ciphertext to the nodes, the nodes are oblivious to their meaning or significance.  A node in the P2P network would be remunerated for storage costs and the store/fetch operations.

The second cryptographic construct employed in MIT Enigma multiparty computation (MPC). The study of MPC schemes seeks to address the problem of a group of entities needing to share some common output (e.g. result of computation) whilst maintaining as secret their individual data items.  For example, a group of patients may wish to collaboratively compute their average blood pressure information among them, but without each patient sharing actual raw data about their blood pressure information.

The MIT Enigma system combines the use of MPC schemes with secret-sharing schemes, effectively allowing some computations to be performed using the shares that are distributed on the P2P. The combination of these 3 computing paradigms (secret-sharing, MPC and P2P nodes) opens new possibilities in addressing the current urgent issues around data privacy and the growing liabilities on the part of organizations who store or work on large amounts of data.

Written by thomas

August 6th, 2016 at 1:10 pm

New Principles for Privacy-Preserving Queries for Distributed Data

without comments

Here are the three (3) principles for privacy-preserving computation based on the Enigma P2P distributed multi-party computation model:

(a) Bring the Query to the Data: The current model is for the querier to fetch copies of all the data-sets from the distributed nodes, then import the data-sets into the big data processing infra and then run queries. Instead, break-up the query into components (sub-queries) and send the query pieces to the corresponding nodes on the P2P network.

(b) Keep Data Local: Never let raw data leave the node. Raw data must never leaves its physical location or the control of its owner. Instead, nodes that carry relevant data-sets execute sub-queries and report on the result.

(c) Never Decrypt Data: Homomorphic encryption remains an open field of study. However, certain types of queries can be decomposed into rudimentary operations (such as additions and multiplications) on encrypted data that would yield equivalent answers to the case where the query was run on plaintext data.


Written by thomas

August 30th, 2015 at 5:51 pm